博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hdu4496 D-City(扭转和支票托收啊 )
阅读量:6207 次
发布时间:2019-06-21

本文共 2510 字,大约阅读时间需要 8 分钟。

主题链接:

D-City

Problem Description
Luxer is a really bad guy. He destroys everything he met.
One day Luxer went to D-city. D-city has N D-points and M D-lines. Each D-line connects exactly two D-points. Luxer will destroy all the D-lines. The mayor of D-city wants to know how many connected blocks of D-city left after Luxer destroying the first K D-lines in the input. 
Two points are in the same connected blocks if and only if they connect to each other directly or indirectly.
 
Input
First line of the input contains two integers N and M.
Then following M lines each containing 2 space-separated integers u and v, which denotes an D-line.
Constraints: 
0 < N <= 10000 
0 < M <= 100000 
0 <= u, v < N. 
 
Output
Output M lines, the ith line is the answer after deleting the first i edges in the input.
 
Sample Input
 
5 10 0 1 1 2 1 3 1 4 0 2 2 3 0 4 0 3 3 4 2 4
 

Sample Output
 
1 1 1 2 2 2 2 3 4 5
Hint
The graph given in sample input is a complete graph, that each pair of vertex has an edge connecting them, so there's only 1 connected block at first. The first 3 lines of output are 1s because after deleting the first 3 edges of the graph, all vertexes still connected together. But after deleting the first 4 edges of the graph, vertex 1 will be disconnected with other vertex, and it became an independent connected block. Continue deleting edges the disconnected blocks increased and finally it will became the number of vertex, so the last output should always be N.
 

Source
思路:
题目须要逆向思考(正向行不通的时候,我们不防换一条路
试试,生活亦是如此)。
我们能够逆向觉得全部的点全是独立的,由于正
向的时候去掉当中某条边的,独立的点不一定会增多(去掉这条边后还有
其它边间接的相连)。所以当我们逆向思考的时候,仅仅会在添加某一条边
时降低独立的点(也就是联通的点增多),这样仅仅会在他之后才会有可能
有某条边的操作是“无效”的(联通的点不变);
#include 
#include
const int maxn = 100017;int father[maxn];int findd(int x){ //return x==father[x] ?

x : father[x]=findd(father[x]); if(father[x] == -1) { return x; } return father[x] = findd(father[x]); } int main() { int n, m; while(~scanf("%d%d",&n,&m)) { for(int i = 0; i < n; i++) { father[i] = -1; } int a[maxn], b[maxn], ans[maxn]; for(int i = 1; i <= m; i++) { scanf("%d%d",&a[i],&b[i]); } ans[m] = n; for(int i = m; i > 1; i--) { int u, v; //scanf("%d%d",&u,&v); int f1 = findd(a[i]); int f2 = findd(b[i]); //printf("f1:%d f2:%d\n",f1,f2); if(f1 != f2) { ans[i-1] = ans[i]-1; father[f1] = f2; } else { ans[i-1] = ans[i]; } } for(int i = 1; i <= m; i++) { printf("%d\n",ans[i]); } } return 0; }

版权声明:本文博客原创文章,博客,未经同意,不得转载。

本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/4721741.html,如需转载请自行联系原作者

你可能感兴趣的文章
ZooKeeper3.4.5-最基本API开发
查看>>
工作测试博客
查看>>
golang
查看>>
powershell 中的"pause"
查看>>
实用的rpm网站
查看>>
Openfire3.9.3源代码导入eclipse中开发配置指南(转载)
查看>>
安装ISO系统(原版系统)系统终极方法
查看>>
SharePoint项目中新建类库的错误处理及项目建设中遇到的问题总结
查看>>
Spring Cloud Eureka 入门 (二)服务提供者详解
查看>>
web前端面试总结
查看>>
wxPython python3.x下载地址
查看>>
教你如何在linux 下批量卸载
查看>>
GC Blocks Lost等待事件
查看>>
Apache Prefork、Worker和Event三种MPM简单分析
查看>>
Linux从入门到精通系列之PPTP
查看>>
magento去除子分类的url地址中带有父分类的url key
查看>>
查询指定目录下的文件中是否包含指定字符串
查看>>
关于文件系统权限的管理
查看>>
CentOS 7 firewalld使用简介
查看>>
高可用性、负载均衡的mysql集群解决方案
查看>>